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Abstract

The study of microbial communities crucially relies on the comparison of metagenomic next-generation sequencing data
sets, for which several methods have been designed in recent years. Here, we review three key challenges in the comparison
of such data sets: species identification and quantification, the efficient computation of distances between metagenomic
samples and the identification of metagenomic features associated with a phenotype such as disease status. We present
current solutions for such challenges, considering both reference-based methods relying on a database of reference
genomes and reference-free methods working directly on all sequencing reads from the samples.
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Introduction
The study of the microbiome, the collective genetic material
from the microorganisms found in a given environment, has
seen a rapid expansion in recent years due to the exceptional
advances in sequencing technologies [1]. These advances have
enabled a tremendous expansion in our ability to interrogate
microbial genomes, moving from the study of microbes that are
amenable to cultivation to the interrogation of all microbes in a
sample.

Sequencing-based approaches for microbiome research con-
sist mostly of high-throughput sequencing of marker genes,
usually regions of one rRNA gene (e.g. 16S for bacteria), and the
‘shotgun’ sequencing of microbial DNA, without selection of any
specific gene [2]. While both approaches are sometimes referred
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to as metagenomics, the term ‘metataxonomics’ is usually pre-
ferred for marker gene sequencing, since it does not allow to
investigate full-genome information. Marker gene sequencing
is appealing in terms of costs and the possibility, assuming
the same marker gene region is targeted, to compare species
abundances across samples (even for lowly abundant species),
but it does not provide genomic information for all microbiome
members, since only the sequenced gene is available. On the
other hand, shotgun sequencing can, potentially, provide (par-
tial) information for all microbiome members.

The analysis of the microbiome is elucidating the crucial role
of microbial communities in the environment and in human
health [3, 4]. A typical metagenomic study comprises several
steps, ranging from the collection and sequencing of samples
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to the computational analysis of the results and to an even-
tual validation [5]. While some applications, for example the
surveillance of food supply, mostly require to analyze single
samples in isolation, one step that is common to most studies
is the comparison of metagenomic samples. For example, in
ecology, metagenomic samples are compared to identify sim-
ilarities and differences between microbial habitats, while in
clinical research, metagenomic samples are compared to iden-
tify metagenomic features distinguishing groups with different
characteristics (e.g. cases versus controls). The challenges aris-
ing in the comparison of metagenomic samples and currently
available computational solutions are the focus of this review.
For a discussion of other challenges arising in the computational
analysis of metagenomes, we refer to other recent reviews (e.g.
[5–8]), not focused on the comparison of metagenomic samples.
In brief, [5] assesses the common problems in the several steps
of the design and analysis of shotgun sequencing experiments,
including critical steps outside the data analysis (e.g. the col-
lection, processing and sequencing of the samples and the val-
idation of results). Breitwieser et al. [6] focus on methods and
databases used for the tasks of read classification and metage-
nomic assembly. Chiu and Miller [7] present the challenges of
implementing next-generation sequencing of metagenomes in
the clinical laboratory. In addition, benchmarks of some of the
components of a metagenomic data analysis pipeline have been
recently published. For example, [8] presents a benchmark of 20
metagenomic classifiers using synthetic and real data, while the
CAMI initiative [9] has produced a comprehensive assessment of
methods for metagenomic species detection and other tools in
metagenomics sample analysis.

There are two major classes of methods for metagenome
analysis: reference-based methods, which map the reads
obtained from sequencing the microbiome against a database
of reference genomes (for example, to detect and quantify the
species in the sample), and reference-free methods, which
process the reads without relying on an external set of refer-
ences. By comparing the sequencing reads to a set of reference
genomes, reference-based methods allow the identification
and quantification of known species or, more generally, of
operational taxonomic unit (OTU) as well as the identification
of biological functional pathways. However, reference-based
methods suffer from the lack of comprehensiveness of the
genome catalogs they rely on, which is due to most microbes
being difficult to culture. On the other hand, reference-free
methods do not suffer from the biases in the reference
sequence resources but do not directly provide information on
known species or insights at the functional level, even if such
information can be obtained after an inferential step to identify
putative taxonomy or putative functional features (e.g. biological
functional pathways can be identified relying on computational
methods for the inference of putative genes and other functional
features [10]).

In the remaining of this review, we focus on three major com-
putational challenges arising in the comparison of metagenomic
samples and provide an overview of the currently available
solutions. In particular, we first discuss the problem of species
detection and quantification and consider both reference-based
and reference-free approaches. We then consider the compu-
tation of distances between metagenomic samples. Finally, we
discuss the comparison of metagenomic samples in the con-
text of metagenome-based disease status classification. While
the 1st two challenges arise mostly in the analysis of shotgun
sequencing data, the 3rd one is relevant for both the analysis of
marker gene sequencing data and shotgun sequencing data.

Computational challenges and methods
Species detection and quantification

Microbial communities can be analyzed and compared through
the detection and quantification of the species they contain.
The detection and quantification of species in a sample can be
carried out using a set of reference genomes, e.g. bacteria and
viruses, or without them (reference free). In the first case, also
known as taxonomic classification or taxonomic binning, the
input sequences are clustered into bins corresponding to their
taxonomic ID. These reference-based taxonomic classification
methods are useful for the identification of organisms with close
relatives in the reference database. When no close relative of a
species is in the reference database, reference-free binning of the
reads may be a useful 1st step in the analysis.

Reference-based species detection

The reference-based methods, a.k.a. taxonomic binning, can be
broadly divided into three categories: (1) alignment-based meth-
ods; (2) marker-based methods, where certain specific marker
sequences are used to identify the species; and (3) sequence-
composition-based methods, which are based on the nucleotide
composition (e.g. k-mers usage). Traditionally, the 1st strategy
was to use BLAST [11] to align each read with all sequences in
GenBank. Later, faster methods have been deployed for this task;
popular examples are MegaBlast [12] and Megan [13]. However,
as the reference databases and the size of sequencing data sets
have grown, alignment has become computationally infeasible,
leading to the development of metagenomics classifiers that
provide much faster results.

Marker-based methods use clade-specific marker genes as a
taxonomic reference, so that the identification of one of these
genes can be used as evidence that a given taxa is present. This
allows faster assignment because the database of marker genes
is far smaller than a database of the full genomes for all species.
Popular examples of marker gene methods are MetaPhlAn [14],
which uses Bowtie2 as fast and sensitive read aligner, and Phy-
losift [15], which is based on the aligner LAST. These algorithms
do not classify the input reads directly; instead, they provide the
microbial composition, expressed in terms of relative abundance
for all taxa that they recognize in the sample.

The fastest and most promising approaches belong to
the composition-based category [16]. The composition-based
methods exploit the full potential of sequencing, as opposed
to marker gene methods, where most of the reads in a sample
do not receive a classification because they are not mapped
to a marker gene. The basic principles of composition-based
methods can be summarized as follows: each genome of
reference organisms is represented by its k-mers and the
associated taxonomic label of the organisms, then the reads
are searched and classified throughout this k-mers database.
For example, Kraken [17] constructs a data structure that is
an augmented taxonomic tree in which a list of significant
k-mers is associated to each node, leafs and internal nodes.
Given a node on this taxonomic tree, its list of k-mers is the
representative for the taxonomic label, and it will be used for
the classification of metagenomic reads. In the classification
step, each read is decomposed into its k-mers and these k-mers
are searched in the tree, then the read is classified by searching
the highest-weighted path in the taxonomic tree. Clark [18] uses
a similar approach, building databases of species- or genus-level
specific k-mers and discarding any k-mer mapping to higher
levels. The precision of these methods is as good as MegaBlast
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[12]; nevertheless, the processing speed is much higher [16].
Several other composition-based methods have been proposed
in recent years. In Girotto et al. [19], the number of unassigned
reads is decreased through reads overlap detection and species
imputation. Centrifuge and Kraken 2 [20, 21] try to reduce
the size of the k-mer database with the use of FM-index and
minimizers, respectively. The sensitivity can be improved by
filtering uninformative k-mers [22] or by using spaced seeds
instead of k-mers [23].

Reference-free species quantification

Reference-based methods are based on a database of reference
genomes and the associated taxonomic labels. This information
is usually indexed in a k-mers database for fast queries. Although
taxonomic read classification is very efficient, the construc-
tion of k-mers databases usually is very demanding, requiring
large amounts of RAM and disk space. Another drawback is
the fact that most bacteria found in environmental samples are
unknown and cannot be cultured and separated in the laboratory
[24]. As a consequence, the genomes of most microbes in an
environmental sample lack a taxonomically related sequences
in existing reference databases.

Reference-free methods, a.k.a. genome binning, do not
require to know all the genomes in the sample; instead, they
try to divide the reads into groups so that reads from the same
species are clustered together. Reference-free classification
tools, also known as binning tools, are based on the observation
that the k-mer distributions of the DNA fragments from the same
genome are more similar than those from different genomes.
Thus, without using any reference genome, one can determine
if two fragments are from genomes of similar species based on
their k-mer distributions. The major problem when processing
metagenomic data is the fact that the proportion of species in a
sample, a.k.a. abundance rate, can vary greatly. Most of the tools
can only handle species with even abundance ratios, and their
binning performances degrade significantly in real situations
when the abundance ratios of the species are different. For
example, BiMeta [25] and MetaCluster [26] try to group the
reads into many small clusters so that reads from minority
species (with low abundance ratios) could exist as isolated
clusters. Both these methods use as means of comparison the
Euclidean distance between the vectors of k-mers counts on
the clusters groups. AbundanceBin [27] works well for very
different abundance ratios, but problems arise when some
species have similar abundance ratios. In Girotto et al. [28], reads
are clustered based on a self-standardized statistic, derived from
alignment-free statistics, that is not dominated by the noise in
the individual sequences and that can compare groups of reads
with different abundance ratios.

Another important step of metagenome analysis is the
reconstruction of new genomes through assembly. Sample
metagenomes can be assembled into contigs, and contig binning
serves as the key step toward the detection of new species,
taxonomic profiling and downstream functional analysis.
Grouping contigs into bins of putative species is one of the
hurdles faced when analyzing metagenomic data. Typically, a
few issues are encountered including struggling to differentiate
related microorganisms, repetitive sequence regions within or
across genomes, sequencing errors and strain-level variation
within the same species, decreasing accuracy for contigs below
a size threshold or excluding low-coverage and low-abundance
organisms [29, 30]. Several techniques have been developed for
contig binning, where studies extract features from contigs to

infer bins based on sequence composition [31, 32], abundance
[33] or hybrids of both sequence composition and abundance
[29, 34–37]. Some hybrid binning tools, such as CONCOCT [29],
MaxBin2.0 [34], GroopM [35] and MetaCon [37], are designed to
bin contigs based on multiple related metagenomic samples.
Among these methods, GroopM [35] is advantageous in its
visualized and interactive pipeline. On one hand, it is flexible,
allowing users to merge and split bins; on the other hand, in the
absence of expert intervention, the automatic binning results of
GroopM are not as satisfactory as CONCOCT [29]. CONCOCT [29]
makes use of the Gaussian mixture model to cluster contigs
into bins. MetaBAT2 [36] calculates integrated distance for
pairwise contigs and then clusters contigs by an iterative graph
partitioning procedure. MaxBin [34] compares the distributions
of distances between and within the same genomes. In Qian
and Comin [37], metagenomic contigs are clustered based on
probabilistic k-mers statistics, contigs coverage and length.
Therefore, these approaches can be applied to bin contigs from
incomplete or uncultivated genomes.

The CAMI initiative [9] has developed a comprehensive
assessment for metagenomics species detection and others
challenges in metagenomics sample analysis. The authors of
[9] concluded that most reference-based read classification
methods are able to reconstruct taxon bins of acceptable quality
down to the family rank. Overall, all tools are more precise
when reconstructing genomes than for species or genus bins,
indicating that the decreased performance for low ranks is
due partly to limitations of the reference taxonomy. As for the
reference-free methods, most genome binners performed well
when no closely related strains are present.

Computing distances between metagenomic samples

After the detection and quantification of the species in each
sample using reference-based methods, microbial communi-
ties can be analyzed and compared using ecological measures,
such as species diversity, richness and uniformity. However,
reference-based methods suffer from the biases of the reference
databases they rely on. A different approach is provided by
de novo comparative metagenomics, which is the comparison
among metagenomic samples based entirely on their reads con-
tent. De novo comparative metagenomics enables new insights,
which are not restricted to the availability and completeness of
ad hoc databases.

The main issue with the de novo comparison between two (or
more) metagenomics samples is that, since they often includes
millions of reads, an all-against-all comparison of their content
becomes impractical from the computational point of view. To
overcome this problem, several methods have been proposed in
literature to make metagenomic samples comparison compu-
tationally affordable, while still effective for the identification
of biological diversity. The computational efficiency is espe-
cially important for large metagenomic projects (e.g. the Human
Microbiome Project [38]) where a large number of samples are
sequenced and compared. Many of these methods consider
the Jaccard distance [39–43], which measures shared content
between samples. Extension to a variety of more powerful envi-
ronmental distances has been implemented more recently [42–
46]. Vector distance between k-mers abundance descriptors has
also been considered [45].

A common factor to all these methods is that the compu-
tation of such distances is based on k-mers presence and/or
abundance. In fact, while the Jaccard similarity measure and
many ecological distances have been originally defined in terms
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of species presence and/or abundance, alternative k-mer-based
definitions have been proposed [39, 42], supported by recent
studies [47] showing that k-mer-based distances are well corre-
lated to taxonomic ones.

In order to achieve computational scalability for similarity
measures between all pairs of samples in a metagenome project,
several techniques have been developed. In the remaining of
this section, we focus on the three main techniques that are
currently employed, in different ways, by tools for metagenomic
samples comparison: probabilistic data structures [39, 40], par-
allel/distributed computation [42, 45] and dimensionality reduc-
tion through sampling [41, 43, 44, 46].

Probabilistic data structures

Compareads [39] and its evolution COMMET (COmpare Multiple
METagenomes) [40] are among the 1st approaches proposed in
literature to compare metagenomic samples. They both aim at
the identification of shared contents, in terms of reads, between
two (or more) samples, which allows the computation of an
approximation of the Jaccard distance. In Compareads and COM-
MET, two reads are considered similar if they share a number
of k-mers above a given threshold. To achieve a small memory
footprint, Compareads uses a probabilistic data structure, based
on a modified Bloom filter, which returns an over-estimation of
the number of similar reads shared by the two reads data sets. If
the volume of k-mers to consider is above a given threshold, then
the computation is split in chunks and the union of the results
of each computation is taken. Compareads creates large inter-
mediate files and does redundant computation, which makes it
not feasible for comparative analysis in very large metagenomic
projects.

COMMET is an evolution of Compareads where each metage-
nomic sample is indexed only once, and such index is then
used to compute the intersection with all the remaining sam-
ples. Moreover, intersections are stored as bitvectors, reducing
the storage space of two orders of magnitude with respect to
Compareads. Once the number of shared reads is estimated, it
can be used to compute the Jaccard distance between samples.

Parallel and distributed computation

Another direction explored by comparative metagenomics is
that of exploiting the additive properties of some ecological dis-
tances, which are often used to measure metagenomic samples
similarity, by exploiting parallelism and/or distributed computa-
tion.

Ecological indices, such as Bray-Curtis, are originally defined
over the number of species that can be found in the samples.
However, in Simka [42] such distances are computed in terms of
shared k-mers, based on the observation that k-mer based dis-
tances have a high correlation with taxonomic-based distances
[47]. Simka achieves scalability by exploiting a parallel k-mer
counting strategy on several samples at once. It then combines
the results in a cumulative distance matrix, without storing large
intermediate files.

Libra [45] performs an all-against-all comparison of metage-
nomes based on k-mer content. It employs the cosine sim-
ilarity to compare samples using sequence composition and
abundance, taking into account for sequencing depth. It also
implements ecological indices such as Bray–Curtis and Jensen–
Shannon. Libra relies on the Hadoop platform for scalability,
which provides fault tolerance and simplifies the implementa-
tion in a distributed environment. It uses the k-mer histogram
for load balancing, an inverted index to avoid storing large

vectors for each sample, and it performs an aggregate distance
matrix computation with a sweep line algorithm.

Dimensionality reduction

Dimensionality reduction can be used to obtain a reduced
feature vector description of a metagenomic sample. Pairwise
similarity between vectors representing different samples in a
metagenomic experiment can then be computed and used to
build a similarity matrix that describes the similarity among all
pairs of samples.

Mash [41] uses the MinHash technique (local sensitive hash-
ing) to subsample the k-mers from the reads of the sample. The
set of sequences are reduced into small sketches, by mapping
unique k-mers into hashes. It then computes distances among
such sketches, considerably reducing the time required for dis-
tance computation. Among the several applications proposed
in [41], Mash has been tested also for metagenomic samples
comparison, proving to be considerably faster than several other
methods. However, the loss of k-mer frequency information in
the computation of the similarity matrix impacts on the resolu-
tion of large-scale comparative analysis. In addition, to obtain a
sketch, Mash requires the extraction of all k-mers in the sample,
which is computationally expensive.

In MetaFast [44], de novo partial assembly of the reads of
a sample into pseudocontigs is performed first. Then, these
pseudocontigs are merged into a single De Bruijn graph. The
subset of k-mers to use as features is obtained from the segmen-
tation of such graph into components: the relative abundance
of the component is used to compute Bray–Curtis dissimilarity
measure.

SAKEIMA (sampling algorithm for k-mers approximation)
[43] is a sampling approach for approximate frequent k-mers
counting. Rigorous provable bounds on the approximation with
respect to the real counts are given by a characterization through
the Vapnik-Chervonenkis (VC) dimension, a core concept from
statistical learning. In Pellegrina et al. [43], several abundance-
based ecological indices (e.g. Bray–Curtis) among metagenomic
samples were considered, showing that SAKEIMA is able to
compute a very close approximation of the distances, by using
only a small fraction of the k-mers for the computation. A
similar good approximation was shown also for the computation
of a presence-based distance such as the widely used Jaccard
distance.

HULK (histosketching using little k-mers) [46] uses the k-mer
spectrum (normalized vector of k-mer frequencies) to represent
microbiome diversity. To avoid computing and storing the k-mer
spectrum, the histosketch data structure [48] is used instead.
Such data structure maintains a set of fixed size sketches to
approximate the k-mer spectrum taking the data from an input
stream. Since the data structure is both updatable and similarity
preserving, it is possible to update both the content of the data
structure and approximate the similarity to other spectra. HULK
includes the computation of (weighted) Jaccard, Eucledian and
some ecological indices.

Metagenome-based disease status classification

After the appropriate preprocessing of the sequencing reads,
metagenomics data can be summed up so to give information
about the microbiota, i.e. the specific microorganisms that are
found within a specific environment, or the microbiome, i.e.
the collection of genomes from all the microorganisms found
in a particular environment. Data matrices are organized to
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report all bacterial taxa present in samples. Taxa are organized
with respect to a specific taxonomic order, for example genus
or species or a more generic OTUs. As previously seen, shot-
gun metagenomics give access to additional data related to
the microbiome, i.e. the collection of genomes from all the
microorganisms in the environment, which can be mapped to
biological functional pathways [49, 50]. The analysis of this type
of data is extremely useful for identifying bacterial species that
can act as biomarkers for the samples in different classes of
interest. The scope of application ranges from the clinic, for
example in the identification of markers for early diagnosis of
colorectal cancer [51] or the identification of healthy donors for
fecal transplantation [52], to the food industry, for example in
the control of food safety and fermentative processes [53].

Beside statistical hypothesis testing, the use of artificial intel-
ligence and machine learning is the method of choice when the
number of samples is sufficiently high, to be able to classify
samples and identify bacterial biomarkers. Moreover, the use of
multivariate approaches might highlight the role of ecological
interactions and niche in the sample class specification [54].
However, in order to obtain correct and robust results, it is
necessary to take into account some characteristics of the data
when applying machine learning approaches [55].

First, as a result of sequencing, there is a large difference,
even of several orders of magnitude, in terms of the number
of total species between different samples. Normalization is
usually applied to NGS data to eliminate this bias between
samples and make species abundances comparable. Most of
the approaches in metagenomics are based on total sum scaling
(divide raw counts by the total number of reads in the sample),
quantile-based normalization, and normalization techniques
borrowed from RNA sequencing such as edgeR [56], DESeq2
[57] and scran [58]. edgeR and DESeq2 take into account the
bias introduced by the most abundant and the rarest species
in the sample; in addition, methods like scran [58] also takes
into account the sparsity of the data set, as in single-cell RNA
sequencing. More recently, ad hoc normalization techniques have
been implemented for microbiota data, explicitly addressing
data sparsity, such as GMPR [59] (based on geometric mean of
pairwise ratios) and Wrench [60] (based on an empirical Bayes
normalization approach).

Indeed, data deriving from metagenomics experiments are
typically very sparse due to the double sampling carried out at
the steps of (i) sample collection and (ii) sequencing. This leads to
data matrices with a very high percentage of zeros. The problem
is that some of these zeros represent actual zero abundance of
a given species in the sample, while others represent missing
values. Therefore, it becomes essential to distinguish ones from
the others even in light of the fact that many machine learning
methods are not able to automatically manage missing values.
Nevertheless, at the present, most of the metagenomics studies
do not explicitly impute data before the analysis.

Finally, the measured counts are not proportional to the
abundance of the species because they add up to a total (the
sequencing depth of the sample). Therefore, they represent a
relative abundance related to a probability of sampling. The data
of this type are called compositional and are not in Euclidean
space but are constrained by the simplex; therefore, standard
methods such as correlation or Euclidean distance are not appli-
cable to unpreprocessed data [61–63]. A typical solution is to use
the transformations introduced by Aitchison [61] and in later
works [64]. The simplest transformation is the pairwise log ratio,
in which an OTU is chosen as reference and each of the other
OTU counts in a sample is expressed as the log base 2 ratio

with respect to the reference. As an alternative, the centered log
ratio, implemented as the log ratio between OTU counts and the
geometric mean of all the counts in a sample, and the isometric
log ratio, defined by Egozcue et al. [64], can be used.

Once the preprocessing has been performed, the biological
interest focuses on the identification of the biomarker species
and on the ability to classify a new sample in the correct class.
The 1st aim of these studies is to identify bacterial taxa that
are characteristic of a sample compared to others. There are a
number of methods that perform univariate statistical tests to
identify bacterial biomarkers. From metastats [65], which has
been a pioneering work in this field, to different approaches
that couple statistical tests on differential abundant taxa with
tests on biological consistency and effect size like LefSe [66],
or with phylogenetic information like MEGAN [67]. More recent
approaches adjust for potential confounding factors and covari-
ates such as biotmle [68] and, in addition, account for the com-
positional nature and the sparsity of the data sets, such as in the
case of ANCOM [62] and ALDEx2 [69]. Many classical supervised
learning algorithm can be applied to this problem, from ridge
regression, lasso and elastic net to support vector machines,
neural networks, random forests and gradient boosting. Instead
of reviewing the different supervised learning methodologies
or the hundreds of application on microbiota and microbiome
studies, we focus here on some open challenges related to the
analysis of this kind of data. The identification of robust lists
of bacterial biomarkers related to a class is an important step to
identify microbial patterns associated with disease status and to
develop methods for disease identification and prediction. How-
ever, very often, different studies come to different conclusions
in terms of species or pathways of interest identified as marker
of a class, with an overlap that is often lower than 50%. This lim-
ited overlap between different studies is attributable to a number
of factors such as (1) the high technical and biological variability
of the data, (2) the size of the data set (few subjects with respect
to the number of analyzed variables)and (3) the heterogeneity of
experimental protocols and computational pipelines used in the
analysis.

As regards the technical variability, a possible approach to
tackle it is to preprocess the data in order to correct for batch
effect and systematic sources of variability, as explained above.
On the other hand, biological variability can be taken into
account by appropriate experimental design, matching samples
in different classes on covariates, since it is known that the
microbiota is extremely sensitive to environmental covariates.
For example, in Homo sapiens, there is a marked sensitivity to
age and nutrition. Furthermore, it is essential to address the
studies with an adequate number of samples available for each
class [70] and, at least in some cases, with sufficient sequencing
depth and coverage of diverse genome regions to detect different
species. A paradigmatic case is represented by Prevotella copri,
a common human gut microbe that has been both positively
and negatively associated with health. A recent analysis [71]
revealed that Prevotella is probably composed of four distinct
species with high variability between individuals and lower
alpha diversity in western population with respect to the rest
of the world. In this specific case, 16S sequencing might be
insufficient to distinguish the different bacterial clades, thus
resulting in apparently incoherent results of different studies.

As regards the 2nd point, there are two stability issues arising
in metagenomics classification. First, since training data are
often scarce, predictive models obtained from different data sets
can be extremely different. A possible solution to this issue
could be borrowed from other fields, in which classification
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methods are often used with a bootstrap Monte Carlo resam-
pling scheme. This strategy has proved effective countermeasure
against effects of unwanted selection bias and tends to stabilize
the lists of selected biomarkers [72]. However, since the number
of variables is generally very high and these variables interact
with each other, i.e. they are often correlated or co-regulated,
they can be combined in many different ways to give many
possible sets of features that are equally good in terms of clas-
sification accuracy. To address this issue, additional information
available on the relationships between species should be used
to improve the stability of the classifiers. The basic idea of
this strategy was implemented in gene expression classification
[73] and could be potentially useful in metagenomics studies to
take into account the complex species relationships, instead of
considering them as independent features.

Finally, as part of the study of the microbiome and microbiota,
there is in general a lack of assessment of the preprocessing and
analysis pipelines, compared to other areas of application of the
NGS, such as RNA sequencing. Given the multiple steps of the
analysis, each of which can introduce bias and compromise the
biological conclusions and the reproducibility of the study, it is
essential to carefully document the analysis pipeline and use
reliable and validated methods for analysis [74]. This last step
requires, on the one hand, the possibility of using reference data
sets, real or simulated, which act as a golden standard and, on
the other, resort to collaborative and internationally coordinated
efforts involving the entire scientific community.

Conclusion
The study of microbiomal communities has grown tremen-
dously in recent years, thanks to the advances in shotgun
sequencing that allow one to interrogate the whole microbiome
in a sample. While different studies require different compu-
tational analyses, a common step in several applications is the
comparison of metagenomes, either directly, by computing the
distance between pairs of microbiome samples, or indirectly, by
identifying features that relate to a phenotype of interest. Here,
we reviewed some of the computationally challenges and the
tools that have been designed to tackle such challenges. One
challenge is the identification and quantification of all species
in a microbial sample, for which both reference-based and
reference-free methods have been designed. A 2nd challenge is
the computation of metagenomic distances, which poses severe
computational issues that have been tackled by several de novo
approaches. A 3rd challenge is the identification of features that
distinguish two or more classes of samples that we discussed in
the context of disease status classification from metagenomes.
Many of the problems that arise in metagenomic analysis
may be solved in the next few years by methodological or
technological advances (e.g. long-read sequencing technologies
such as Pacific Biosciences and Oxford Nanopore Technologies),
but the awareness of the issues arising in the comparison of
metagenomic samples is a requirement to avoid critical errors
in the analysis of large and complex metagenomic data sets.

Key Points
• The comparison of microbiome samples is crucial in

several microbial studies, requiring advanced compu-
tational tools for critical steps. These tools are either
reference based, comparing reads in a data set with

reference genomes in a database, or reference free,
which consider all reads in the data set.

• The identification and quantification of the species in
the sample is a critical step for techniques based on
the similarity between the number or the proportion
of species in samples.

• De novo methods for computing distances between
metagenomic samples have to overcome severe com-
putational issues posed by the large sizes of next-
generation sequencing data sets but are not subject to
the biases in the reference sequence resources.

• Applications include the identification of similarities
and differences between microbial communities in
different habitats and the prediction of disease status
from metagenomic information.
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